
Database Scripts

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

Database Scripts

• Tables

• Views

• Stored Procedures

• Triggers

• Default Data

Why make Database Scripts?
Development PC 1

Development PC 2

Development PC 3 Customer 1 Customer 2

Test Environment

Production Environment

Development
Environment

Test Environment 1

SCC
System

Code and
Database

Scripts

During Development
everybody should use
a Local Database

Why make and use Database Scripts?
• It is easy to just add a new table or column directly into the database

– then later you probably forgot that you did it
– If everybody just add tables and columns or change data types when they feel for it, It will sooner

or later become a total mess

• All changes in the database need to properly documented
• It makes it easy to install a new database or update an existing database – you just

execute the script
• If there are multiple developers that have their local development database, they can

just run the latest database script in order to update their database
• You may have customers running different versions of your software (and again will

need to run different version of the database)
• Typically you want to include the Database Script into a setup to make it easy to

install your software.
• Assume you have thousands of different customers that need to install your software

on their local server.

Local Database
Why should each Developer have their own personal
Database?
• They may work on different branches or different releases

of the software that requires different databases
• You don’t need internet access
• You may want to put lots of data into the database when

developing and testing the software. This data may nor
be interesting or relevant for others than you

• You will be able to test the Database Scripts
• Etc.

Tables

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

Create SQL Script using ERwin
Make sure you are
using the Physical

Model
1

2

3

Select “Forward Engineering”
and “Schema...”

Select/Deselect different Options
in order to make your script the
way you want. Click “Preview” in

order to see the results.

4

Click “Save” when you are
satisfied with your Script

if not exists (select * from dbo.sysobjects where id = object_id(N'[AUTHOR]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)
CREATE TABLE [AUTHOR]
(

[AuthorId] [int] IDENTITY(1, 1) NOT NULL PRIMARY KEY,
[AuthorName] [varchar](50) NOT NULL UNIQUE,

)
GO

if not exists (select * from dbo.sysobjects where id = object_id(N'[PUBLISHER]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)
CREATE TABLE [PUBLISHER]
(

[PublisherId] [int] IDENTITY(1, 1) NOT NULL PRIMARY KEY,
[PublisherName] [varchar](50) NOT NULL UNIQUE,

)
GO

if not exists (select * from dbo.sysobjects where id = object_id(N'[CATEGORY]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)
CREATE TABLE [CATEGORY]
(

[CategoryId] [int] IDENTITY(1, 1) NOT NULL PRIMARY KEY,
[CategoryName] [varchar](50) NOT NULL UNIQUE,
[Description] [varchar](1000) NULL,

)
GO

if not exists (select * from dbo.sysobjects where id = object_id(N'[BOOK]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)
CREATE TABLE [BOOK]
(

[BookId] [int] IDENTITY(1, 1) NOT NULL PRIMARY KEY,
[Title] [varchar](50) NOT NULL UNIQUE,
[ISBN] [varchar](20) NOT NULL,
[PublisherId] [int] NOT NULL FOREIGN KEY REFERENCES [PUBLISHER] ([PublisherId]),
[AuthorId] [int] NOT NULL FOREIGN KEY REFERENCES [AUTHOR] ([AuthorId]),
[CategoryId] [int] NOT NULL FOREIGN KEY REFERENCES [CATEGORY] ([CategoryId]),

)
GO

Ex
am

p
le

SQ
L

Se
rv

er
 M

an
ag

em
en

t
St

u
d

io Execute the Table Script
from SQL Server

Management Studio

if not exists (select * from dbo.sysobjects where id = object_id(N'[CUSTOMER]') and OBJECTPROPERTY(id,

N'IsUserTable') = 1)

CREATE TABLE CUSTOMER

(

CustomerId int PRIMARY KEY,

CustomerNumber int NOT NULL UNIQUE,

LastName varchar(50) NOT NULL,

FirstName varchar(50) NOT NULL,

AreaCode int NULL,

Address varchar(50) NULL,

Phone varchar(50) NULL,

)

GO

if exists(select * from dbo.syscolumns where id = object_id(N'[CUSTOMER]') and OBJECTPROPERTY(id,

N'IsUserTable') = 1 and name = 'CustomerId')

ALTER TABLE CUSTOMER ALTER COLUMN CustomerId int

Else

ALTER TABLE CUSTOMER ADD CustomerId int

GO

if exists(select * from dbo.syscolumns where id = object_id(N'[CUSTOMER]') and OBJECTPROPERTY(id,

N'IsUserTable') = 1 and name = 'CustomerNumber')

ALTER TABLE CUSTOMER ALTER COLUMN CustomerNumber int

Else

ALTER TABLE CUSTOMER ADD CustomerNumber int

GO

...

SQL Script Example that has been generated
with ERwin but has been modified in SQL Server
Management Studio for more robustness. The
Script handles that tables may already exist, etc.

Check if Columns already exists
If Exists -> Modify
If not Exists -> Add

if not exists (select * from dbo.sysobjects where id = object_id(N'[CUSTOMER]') and OBJECTPROPERTY(id,

N'IsUserTable') = 1)

CREATE TABLE CUSTOMER

(

CustomerId int PRIMARY KEY,

CustomerNumber int NOT NULL UNIQUE,

LastName varchar(50) NOT NULL,

FirstName varchar(50) NOT NULL,

AreaCode int NULL,

Address varchar(50) NULL,

Phone varchar(50) NULL,

)

GO

if exists(select * from dbo.syscolumns where id = object_id(N'[CUSTOMER]') and OBJECTPROPERTY(id,

N'IsUserTable') = 1 and name = 'CustomerId')

ALTER TABLE CUSTOMER ALTER COLUMN CustomerId int

Else

ALTER TABLE CUSTOMER ADD CustomerId int

GO

if exists(select * from dbo.syscolumns where id = object_id(N'[CUSTOMER]') and OBJECTPROPERTY(id,

N'IsUserTable') = 1 and name = 'CustomerNumber')

ALTER TABLE CUSTOMER ALTER COLUMN CustomerNumber int

Else

ALTER TABLE CUSTOMER ADD CustomerNumber int

GO

...

Views

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

Creating Views using SQL code
IF EXISTS (SELECT name

FROM sysobjects

WHERE name = 'CourseData'

AND type = 'V')

DROP VIEW CourseData

GO

CREATE VIEW CourseData

AS

SELECT

SCHOOL.SchoolId,

SCHOOL.SchoolName,

COURSE.CourseId,

COURSE.CourseName,

COURSE.Description

FROM

SCHOOL

INNER JOIN COURSE ON SCHOOL.SchoolId = COURSE.SchoolId

GO

You can Use the View as an
ordinary table in Queries:

A View is a “virtual” table that
can contain data from multiple
tables

Inside the View you join the
different tables together using
the JOIN operator

The Name of the View

Create View:

Using the View:

This part is not necessary – but if you make any
changes, you need to delete the old version before
you can update it

select * from CourseData

1

2

View Template
IF EXISTS (SELECT name

FROM sysobjects

WHERE name = '<ViewName>'

AND type = 'V')

DROP VIEW <ViewName>

GO

CREATE VIEW <ViewName>

AS

SELECT

<TableName>.<ColumnName>,

<TableName>.<ColumnName>,

<TableName>.<ColumnName>,

<TableName>.<ColumnName>,

<TableName>.<ColumnName>

FROM

<TableName1>

INNER JOIN <TableName2> ON <TableName1>.<PrimKeyColumnName1> = <TableName2>.<PrimKeyColumnName2>

GO

Copy to SQL Server Management Studio, save as a SQL
File (.sql) as the same name as the View you are going
to create. Store all your files on your hard drive.

IF EXISTS (SELECT name
FROM sysobjects
WHERE name = 'GetBookData'
AND type = 'V')

DROP VIEW GetBookData
GO

CREATE VIEW GetBookData
AS

SELECT
BOOK.BookId,
BOOK.Title,
BOOK.ISBN,
PUBLISHER.PublisherName,
AUTHOR.AuthorName,
CATEGORY.CategoryName

FROM BOOK
INNER JOIN AUTHOR ON BOOK.AuthorId = AUTHOR.AuthorId
INNER JOIN PUBLISHER ON BOOK.PublisherId = PUBLISHER.PublisherId
INNER JOIN CATEGORY ON BOOK.CategoryId = CATEGORY.CategoryId

GO

Ex
am

p
le

Creating Views using the Editor

Add necessary tables
Copy the SQL Code and Create a New Script in
the Management Studio

Graphical Interface where you can select columns you need
1

2

3

4

Stored Procedures

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

Stored Procedure
IF EXISTS (SELECT name

FROM sysobjects
WHERE name = 'StudentGrade'
AND type = 'P')

DROP PROCEDURE StudentGrade
OG

CREATE PROCEDURE StudentGrade
@Student varchar(50),
@Course varchar(10),
@Grade varchar(1)

AS

DECLARE
@StudentId int,
@CourseId int

select @StudentId = StudentId from STUDENT where StudentName = @Student

select @CourseId = CourseId from COURSE where CourseName = @Course

insert into GRADE (StudentId, CourseId, Grade)
values (@StudentId, @CourseId, @Grade)
GO

execute StudentGrade 'John Wayne', 'SCE2006', 'B'

A Stored Procedure is like a Method in C# - it
is a piece of code with SQL commands that
do a specific task – and you reuse it

Input Arguments

Internal/Local Variables

Procedure Name

SQL Code (the “body” of the
Stored Procedure)

Note! Each variable starts with @

Create Stored Procedure:

Using the Stored Procedure:

This part is not necessary – but if you make any
changes, you need to delete the old version before
you can update it

1

2

Stored Procedure Template
IF EXISTS (SELECT name

FROM sysobjects

WHERE name = '<StoredProcedureName>'

AND type = 'P')

DROP PROCEDURE <StoredProcedureName>

GO

CREATE PROCEDURE <StoredProcedureName>

@<InputVariable1> <DataType>,

@<InputVariable2> <DataType>

AS

DECLARE

@<InternalVariable1> <DataType>,

@<InternalVariable2> <DataType>

select @<InternalVariable1> = <ColumnName> from <TableName> where <ColumnName> =

@<InputVariable1>

insert into <TableName> (<ColumnName1>, <ColumnName2>, ...) values (@<InternalVariable1>,

@<Inputvariable1>, ...)

GO

Copy to SQL Server
Management Studio, save as a
SQL File (.sql) as the same
name as the SP you are going
to create. Store all your files
on your hard drive.

IF EXISTS (SELECT name
FROM sysobjects
WHERE name = 'CreateBook'
AND type = 'P')

DROP PROCEDURE CreateBook
GO

CREATE PROCEDURE CreateBook
@Title varchar(50),
@Isbn varchar(20),
@PublisherName varchar(50),
@AuthorName varchar(50),
@CategoryName varchar(50)
AS

if not exists (select * from CATEGORY where CategoryName = @CategoryName)
INSERT INTO CATEGORY (CategoryName) VALUES (@CategoryName)

if not exists (select * from AUTHOR where AuthorName = @AuthorName)
INSERT INTO AUTHOR (AuthorName) VALUES (@AuthorName)

if not exists (select * from PUBLISHER where PublisherName = @PublisherName)
INSERT INTO PUBLISHER (PublisherName) VALUES (@PublisherName)

if not exists (select * from BOOK where Title = @Title)
INSERT INTO BOOK (Title, ISBN, PublisherId, AuthorId, CategoryId)
VALUES
(
@Title,
@ISBN,
(select PublisherId from PUBLISHER where PublisherName=@PublisherName),
(select AuthorId from AUTHOR where AuthorName=@AuthorName),
(select CategoryId from CATEGORY where CategoryName=@CategoryName)
)

GO

Ex
am

p
le

Triggers

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

Triggers
IF EXISTS (SELECT name

FROM sysobjects

WHERE name = 'CalcAvgGrade'

AND type = 'TR')

DROP TRIGGER CalgAvgGrade

GO

CREATE TRIGGER CalcAvgGrade ON GRADE

FOR UPDATE, INSERT, DELETE

AS

DECLARE

@StudentId int,

@AvgGrade float

select @StudentId = StudentId from INSERTED

select @AvgGrade = AVG(Grade) from GRADE where StudentId = @StudentId

update STUDENT set TotalGrade = @AvgGrade where StudentId = @StudentId

GO

A Trigger is executed when you insert, update or delete data in a Table
specified in the Trigger.

Inside the
Trigger you can
use ordinary SQL
statements,
create variables,
etc.

Name of the Trigger

Specify which Table the
Trigger shall work on

Internal/Local Variables

SQL Code
(The “body”
of the Trigger)

Specify what kind of operations the Trigger
shall act on

Note! “INSERTED” is a temporarily table containing the latest inserted data, and it is very handy to use inside a trigger

Trigger Example:

This part is not necessary – but if you make any
changes, you need to delete the old version before
you can update it

Trigger Template
IF EXISTS (SELECT name

FROM sysobjects

WHERE name = '<TriggerName>'

AND type = 'TR')

DROP PROCEDURE <TriggerName>

GO

CREATE TRIGGER <TriggerName>

FOR UPDATE, INSERT, DELETE –-Delete the ones not needed

AS

DECLARE

@<InternalVariable1> <DataType>,

@<InternalVariable2> <DataType>

select @Variable1 = Column1 from INSERTED

select @Variable2 = AVG(Column2) from TABLE where Column1 = @Variable1

update TABLE set Column3= @Variabl2e where Column1= @Variable1

GO

Copy to SQL Server Management Studio, save as a SQL
File (.sql) as the same name as the Trigger you are going
to create. Store all your files on your hard drive.

IF EXISTS (SELECT name
FROM sysobjects
WHERE name = 'CalcAvgGrade'
AND type = 'TR')

DROP TRIGGER CalgAvgGrade
GO

CREATE TRIGGER CalcAvgGrade ON GRADE
FOR UPDATE, INSERT, DELETE

AS
DECLARE
@StudentId int,
@AvgGrade float

select @StudentId = StudentId from INSERTED

select @AvgGrade = AVG(Grade) from GRADE where StudentId = @StudentId

update STUDENT set TotalGrade = @AvgGrade where StudentId = @StudentId

GO

Ex
am

p
le

Default Data Scripts

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

Default Data Script

• Typically we need to have some data in the
Database, typically some information needed
by our Software Program

• It could be e.g., some “Schools”, etc. that our
Software System need to run properly

• All these “Default Data” can be entered in a
Script

--CATEGORY ----------------------------------
INSERT INTO CATEGORY (CategoryName) VALUES ('Science')
GO
INSERT INTO CATEGORY (CategoryName) VALUES ('Programming')
GO
INSERT INTO CATEGORY (CategoryName) VALUES ('Novel')
GO

--AUTHOR ----------------------------------
INSERT INTO AUTHOR (AuthorName) VALUES ('Knut Hamsun')
GO
INSERT INTO AUTHOR (AuthorName) VALUES ('Gilbert Strang')
GO
INSERT INTO AUTHOR (AuthorName) VALUES ('J.R.R Tolkien')
GO
INSERT INTO AUTHOR (AuthorName) VALUES ('Dorf Bishop')
GO

--PUBLISHER ----------------------------------
INSERT INTO PUBLISHER (PublisherName) VALUES ('Prentice Hall')
GO
INSERT INTO PUBLISHER (PublisherName) VALUES ('Wiley')
GO
INSERT INTO PUBLISHER (PublisherName) VALUES ('McGraw-Hill')
GO

--BOOK ----------------------------------
INSERT INTO BOOK (Title, ISBN, PublisherId, AuthorId, CategoryId)
VALUES
(
'Introduction to Linear Algebra',
'0-07-066781-0',
(select PublisherId from PUBLISHER where PublisherName='Prentice Hall'),
(select AuthorId from AUTHOR where AuthorName='Gilbert Strang'),
(select CategoryId from CATEGORY where CategoryName='Science')
)
GO

INSERT INTO BOOK (Title, ISBN, PublisherId, AuthorId, CategoryId)
VALUES
(
'Modern Control System',
'1-08-890781-0',
(select PublisherId from PUBLISHER where PublisherName='Wiley'),
(select AuthorId from AUTHOR where AuthorName='Dorf Bishop'),
(select CategoryId from CATEGORY where CategoryName='Programming')
)
GO

Ex
am

p
le

Database Script
Generator

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

Database Script Deployment
Development PC 1

Development PC 2

Development PC 3

Customer 1 Customer 2

Test Environment

Production Environment

Development
Environment

Test Environment 1

SCC
System

Code and
Database

Scripts

1

2

3

Install Database
Tables, Views, Stored
Procedures, etc.
using a Script

Database Script Generator

Development Environment Test or Production Environment

Create one Database
Script which contains all
Tables, Views, Stored
Procedures, Triggers, etc.

Multiple Scripts, One ore more Table Scripts, and
Scripts for each View, Stored Procedure, Trigger, etc.

Database Script Generator

Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: hans.p.halvorsen@usn.no

Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

